Simulation and experiment for soft matter systems

We study the mechanical properties of functional soft materials using computer simulation. Our research focuses on the rheology of complex fluids. We develop simulations to capture mesoscale dynamics and microstructures in out-of-equilibrium conditions, such as flowing soft-matter or biological systems. One of our goals is to bring insights from soft matter physics to biomaterials sciences and living phenomena. We are also interested in investigating colloidal phenomena for medical applications.

Directions

  • Fluid mechanics of dense particulate suspensions

The rheology and fluid mechanics of particle suspensions remain a challenging problem. Dissipative dynamics of microscale particles require consideration of constraints such as contact forces that deprive them of freedom of tangential motion and the incompressibility of the fluid that fills the gaps between particles. We have introduced new simulation methods to address the nonequilibrium physics in flowing dense suspensions.

颗粒悬浮液的流变学和流体力学是一个具有挑战性的问题。细颗粒之间的耗散需要考虑一些特殊的力学约束,例如限制切向运动的接触力和颗粒隙间流体的不可压缩性。我们引入了全新的模拟方法来处理浓悬液流中的非平衡物理问题。

Simulation software

Romain Mari と2012年から開発してきた懸濁液シミュレーションのコード

  • New simulation approach (LubDEM +coarse-grained CFD) for non-uniform flows.