Simulation and experiment for soft matter systems

We study the mechanical properties of functional soft materials using computer simulation. Our research focuses on the rheology of complex fluids. We develop simulations to capture mesoscale dynamics and microstructures in out-of-equilibrium conditions, such as flowing soft-matter or biological systems. One of our goals is to bring insights from soft matter physics to biomaterials sciences and living phenomena. We are also interested in investigating colloidal phenomena for medical applications.


  • Fluid mechanics of dense particulate suspensions

The rheology and fluid mechanics of particle suspensions remain a challenging problem. Dissipative dynamics of microscale particles require consideration of constraints such as contact forces that deprive them of freedom of tangential motion and the incompressibility of the fluid that fills the gaps between particles. We have introduced new simulation methods to address the nonequilibrium physics in flowing dense suspensions.


Simulation software

Romain Mari と2012年から開発してきた懸濁液シミュレーションのコード

  • New simulation approach (LubDEM +coarse-grained CFD) for non-uniform flows.


We are working with ARES-G2 rheometor.



Ryohei SETO

  • NSFC-RFIS II (外国学者研究基金项目, 外国优秀青年学者) 12150610463 [2022–2023]
    Computational rheology to investigate aging effects of composite materials

  • NSFC 面上项目 12174390 [2022–2025]
    New simulation scheme for migration and clogging of dense suspensions in channel flow

Yujie JIANG 蒋玉杰

  • 博士后面上基金 2022M723114 [2022–2023]
    掺杂颗粒凝胶的动力学研究 (Gelation dynamics in gel-granular composites)

Zhongqiang XIONG 熊钟强

  • NSFC 理论物理专款研究项目 (National Natural Science Foundation of China for Theoretical Physics research project) 12247174 [2022–2023]
    填充高分子流变本构模型 (Rheological Constitutive Models for Particles Filled Polymer)